
Intermediate Python -- Part 2
Thierry Géraud

2024

explicit_typing: bool = True # do it, it saves lives!

Quick reminder

Test: write a Python program that input a number of lines and stores the strings in an

appropriate structure

such as:

 *

or:

 *

what was the main point of this exercise?

we want an algorithm (so a) such as:

input n # numbner of lines
for each line
 print a series of spaces ' ' (how many?)
 print a series of stars '*' (how many?)
an output has been created

print is for debugging purpose; afterwards, we will store...

a way to print---or store?---is:

from sys import stdout # explain...

sys.stdout.write(char) # "std::cout <<" in C++
 # "System.out.print" in Java

a skeleton of code for the exercise here...

from sys import stdout

def pyramid_print(n):
 spc = 0 # first number of spaces, depending on 'n'
 lenx = 0 # first number of stars; first means on the 1st line
 for i in range(0, n): # for each line
 for j in range(0, spc):
 sys.stdout.write(' ') # start with space(s)
 for j in range(0, lenx):
 sys.stdout.write('*') # then write star(s)
 sys.stdout.write('\n')
 # changes for the next line:
 spc -= 0
 lenx += 0 # to deal with the next iteration
 sys.stdout.flush() # flush the *buffer* stdout

pyramid_print(3) # just a test

replace zeros!

now we want something like:

from FIXME import FIXME

def pyramid_string_list(n: int) -> List[str]:
 out: List[str] = []

 # cut

 return out

print(''.join(pyramid_string_list(3)))

spot the two major differences with the 1st version, and discuss them (pros/cons)

last we want the simplest code:

def pyramid_string(n: int) -> str:
 assert n > 0 # run-time test (dev mode); no error handling (release)
 s: str = ''

 # cut

 return s

and finally an actual program:

cut

if __name__ == '__main__':
 n = int(input(''))
 print(pyramid_string(n))

why is it a program, not just a script?

Another exercise (not mandatory, but highly recommanded if you feel not so self-

confident with the 1st one): now the output is

* * *
* *
* * *

or:

* * * * *
* *
* *
* *
* * * * *

and the input 'n' shall be odd

your feedback: are you OK with all the notions involved in this exercise?

a program = data types and algorithms (functions)

Illustration:

a data type

@dataclass # a useful "decorator" to know
class University:
 name: str = None
 location: str = None

an algorithm, dedicated on objects being a University

def relocalize(u: University):
 if u.location == "Kremlin-Bicetre":
 u.location = "Grand Paris"

With object-orientation:

a program = a set of types (and their relationships)

a type = data + algorithms on these data

Illustration:

we want rooms and doors

thanks to the types Room and Door

note the use of the plural/singular -> explanation?

a room has a number (data)

a room can be equiped with a new door (algorithm)

in object-orientation, a class has attributes and methods:

description-level instance-level meaning

class object an entity (*)

attributes data its state

methods (properties) routines its behavior

the two following objects live independently:

d11 = Door(11) # creates a new Door -> "constructs" a Door
d12 = Door(12) # constructs another Door -> a new memory slot
d12.close() # we want 'd12' to be closed

and they can be "part of" a "larger" object:

r1 = Room(number = 1) # we have a new room
r1.doors.append(d11) # a room have doors
r1.open() # a room can be opened
cut
for d in r1.doors:
 print(d.number) # we can print this room door numbers

all these objects, some of them interacting with each other, make a program run /

evolve

Excerpt from the previous slide:

we have a new room
a room have doors
a room can be opened
 # we can print a room door number

what does that mean? what is the translation into Python?

they can be "part of" a "larger" object

is this programming?

Hint: if it is programming, then programming is

(discussion)

"a room have doors" means:

any room have doors

every rooms have doors

the class 'Room' has an attribute 'doors'

"a room can be opened" means:

any/every room/s can be opened

the class 'Room' has a method 'open' (action vs reading data)

In

r1.doors
cut
print(d.number)

we access some data of the room 'r1' and of the door 'd'

In

r1.open()

we call an algorithm (piece of code / subroutine) on the room 'r1'

we say that 'r1' is the target of this call / target = subject = recipient

it reads: "r1, do open" -> execute this action (data can be modified) / this is an
explicit message (we do not know the internals) / a program is doing things

r1.doors
cut
print(d.number)

so we have

'doors' being a (public) attribute of the class 'Room'

'number' being a (public) attribute of the class 'Door'

"(public)" means that we can directly access to data -> not a good idea, see later...

r1.open()

so

'open' is a (public) method of the class 'Room' = we can open a room

we express that objects can do things / we can do things on objects

"object, do that" => my program evolves --- things are done

'r1.open()' = "r1, do open" => we give/write instructions

a program is a set of instructions, but their are not linear, just like for a script

so

the accessibility is public
meaning we can use it: access some data (attribute) / run an algorithm
(method)

in the cas of methods, without knowing some internal details

that can be a very desirable property

note that accessing to raw data (attribute) and modify them can be risky

control what is done with data would be better...

What is Object-Orientation (OO)?

object-orientation features:

objects / sometimes with classes

data abstraction / encapsulation

inclusion polymorphim / inheritance

dynamic dispatch / message passing

open recursion

an object-oriented program looks like:

(does that look like a script?)

Exercise: read the following class

class Door:
 """a very simple Door class"""

 def __init__(self, number: int, opened: bool = True):
 self.number = number
 self.opened = opened

 def open(self):
 self.opened = True

and this sample use:

dd = [Door(i) for i in range(10)] # list comprehension
for d in dd:
 d.open()

Live step-by-step explanations:

FIXME

now we want to log when a door is opened so we write:

class Door:

 # cut

 def open(self):
 self.opened = True
 print(self, "is opened")

 def __str__(self):
 return "door " + str(self.number)

Explanations...

Reminders:

1. with object-orientation:

a program = a set of types (and their relationships)

a type = data + algorithms on these data

2. in object-orientation, a class has attributes and methods:

description-level instance-level meaning

class object an entity

attributes data its state

methods (properties) (sub)routines its behavior

Encapsulation in OO is: grouping attributes and methods

(we will see that it is also related with information hidding...)

Live exercice:

let us define (right now) all together what can be a room

so write a 'Room' class

Class hierarchies / Inheritance / inclusion polymorphism

this section is just about types are "organized" and about typing a set of types

dogs and cats are animals

Animal is a superset of Dog -- we say that Animal is a superclass of Dog

Cat is a subset of Animal -- we say that Cat is a subclass of Animal

(live drawing...)

the "is-a" relationship is called generalization

Animal generalizes the notions of Cat's and Dog's

every animals can make sounds, so we define a method for that:

class Animal:
 def make_sound(self):
 pass # meaning: do nothing

'self' (1st argument) designates the animal (object) that 'make_sound'

to call of this method:

a.make_sound() # here 'self' is 'a' / actually not passed as an argument

'a' is not an argument in this method call; it is the target

so in:

class Animal:
 def make_sound(self):
 pass # meaning: do nothing

'self' designates the target

class Dog(Animal): # maps: a dog is an animal
 def make_sound(self): # the method implementation for dogs
 print("bark")

class Cat(Animal): # maps: a cat is an animal
 def make_sound(self): # the method implementation for cats
 print("meow")

a = [Dog(), Cat()] # a list of animals (dogs and cats are animals)
for e in a:
 e.make_sound() # gives: bark meow

we have several implementations for 'make_sound' in different classes

when calling 'make_sound', a particular implementation is selected and run

a[0].make_sound()
a[1].make_sound()

'a[0]' is a dog (*) so the method 'make_sound' of 'Dog' is called
'a[1]' is a cat so the method 'make_sound' of 'Cat' is called

 (*) meaning, an instance of the class Dog / an object with type Dog

aa: Animal = a[0] # first element of our list of animals
print(id(aa) == id(a[0])) # gives: True

we have:

'aa' designates 'a[0]'

it is a reference, not a copy

just like in

a: int = 1 # we expect an integer, and we get 1; correct
b = a # 'b' is a reference to 'a'

'a[0]' is a 'Dog'

'aa' is a variable of type 'Animal'

this initialization is: we expect an animal, and we get a dog

so this is correct

aa.make_sound() # a method is called on this object

we have:

'aa' is a variable of type 'Animal'

we call the 'make_sound' method on this (instance of) 'Animal'

yet we know that the exact type of 'aa' is actually 'Dog'

the implementation of 'make_sound' that is called is the one of 'Dog'

static type: the one of the variable

dynamic type: the one of the object

when calling a method, the selected implementation is the one defined in the class of
the target object...

...even though a superclass

now we want both attributes and methods:

we keep the 'make_sound' method

an attribute can be the animal name

every data shall be initialized (good practice)
a special method is defined to construct objects

the constructor is named __init__

class Animal:
 def make_sound(self):
 pass # meaning: do nothing

class Dog(Animal): # a dog is an animal

 def __init__(self, name: str = ""): # a constructor (special method)
 self.name = name # (declares and) initializes an attribute

 def make_sound(self): # a method
 print(self.name, "bark") # access to the attribute 'name'

 def test(self):
 self.make_sound() # just to illustrate "open recursion"

sample use:

d1 = Dog("Buddy")
d2 = Dog("Fluffy")

d1.make_sound() # 'self' is 'd1' in this call
d2.make_sound()

print(d1.name == d2.name) # gives: False

each object has its own attribute

we do likewise for Cat

we then have:

make_sound for all animals

a name for every dogs, and a name for every cats
that is redundant code (which is bad)

why not having a name for name for every animals

so for dogs, cats, and upcoming new animal classes

let's equip the Animal class:

class Animal:

 def __init__(self, name: str = ""): # constructor
 self.name = name # attribute

 def make_sound(self) -> None: # polymorphic method
 pass

 def run(self) -> None: # new method, available for all animals
 print("now running")

so we can now write:

d = Dog()
print(d.name) # a dog has a name
d.run() # a dog can run

we say that 'name' and 'run' are inherited (from the super class Animal)

class Animal:
 def __init__(self, name: str = ""):
 self.name = name # attribute for each Animal
 # cut

class Dog(Animal): # a dog is an animal

 def __init__(self, name: str = "", n_bones: int = 0):
 super().__init__(name) # calls the Animal constructor
 self.n_bones: int = n_bones # Dog has an extra attribute

 def make_sound(self) -> None: # the method implementation for dogs
 print(self, "bark")

Dog has two attributes:

'name', inherited from the class Animal

'n_bones', declared in the class Dog

class Animal:
 # cut
 def run(self) -> None:
 print("now running")

class Dog(Animal): # a dog is an animal

 def __init__(self, name: str = "", n_bones: int = 0):
 super().__init__(name) # calls the Animal constructor
 self.n_bones: int = n_bones # Dog has an extra attribute

 def make_sound(self) -> None: # the method implementation for dogs
 print(self, "bark")

Dog has two methods:

'run', inherited from the class Animal

'make_sound', defined in the class Dog

plus its constructor

there is a difference between

a "regular" attribute:

one per object

'd1.name' and 'd2.name' are two distinct data

a class attribute (or class variable)

one for the class

shared by all objects

class Animal:
 numbers: int = 0 # class attribute/variable
 def __init__(self, name: str = ""):
 self.name = name # object attribute
 Animal.numbers += 1
 # cut

sample use:

d = [Dog(), Dog(), Cat()]
print(Animal.numbers) # gives: 3

