
Intermediate Python -- Part 1
Thierry Géraud

2024

print("Hello world!")

Test: write a Python program that input a number of lines and stores the strings in an
appropriate structure

such as:

 *

or:

 *

email me your solution at thierry.geraud@epita.fr with the tag [INTPY] in the subject

mailto:thierry.geraud@epita.fr

Let's start with a few questions...

What language(s) do you know?

your answers : C/C++, ruby, javascript, HTML, brainfuck, ... but not "english, or french..."

1. What is Python?

2. How do you use it?

3. What for?

4. Describe Python...

answers...

We will come back to this in a few minutes...

$e^{i\pi} = 1$ gives:

What have we here?

answer: a description language (LaTeX)... not a programming language

% for i in ls -d *; echo $i

What is it?

Is it programming?

answers:
- a loop in shell (zsh); that is an instruction; we are scripting
- we do not have a program at the end, so no

What is a programming language?

answer:

read https://en.wikipedia.org/wiki/Programming_language

https://en.wikipedia.org/wiki/Programming_language

Courses / lectures + sessions of practical work

Your 1st project: display a map described by a file

Characterization of Python

Python is:

free and open-source software

portable

a programming language which is

high-level

general-purpose

multi-paradigm

easy to learn, easy to code, easy to read → accessible

equipped with a large standard library, plus a vast range of libraries.

history of programming languages → http://tinyurl.com/IntPyLanguages

http://tinyurl.com/IntPyLanguages

 Fetch "<lang> → Python"

High-level language

compare with some assembler code:

Fib PROC
 mov eax, 1
 xor ebx, ebx
 xor edx, edx
L1:
 add eax, ebx ; eax += ebx
 mov ebx, edx
 mov edx, eax
loop L1
 ret
Fib ENDP

General-purpose language

broadly applicable across application domains

e.g., bank, medicine, science

lacking specialized features for a particular domain

a counterexample: solve some constraint-based problems (use Prolog

instead)

note that libraries (except the standard one(s)) are not part of the language

a related key idea: a language now comes with an environment, and a

community

A multi-paradigm language

Python is:

imperative

procedural

structured

object-oriented

somehow a bit

functional

generic

Imperative

a = 0
a += 1

a series of instructions that change the state of the running program

Procedural

def fact(n):
 return 1 if (n == 0 or n == 1) else n * fact(n - 1)
 # an example of "literate programming" here

a procedure is great to factor code, to be called many times

Structured

with control structures (e.g., for, if)

with blocks -- thanks to indentation

for i in range(len(lst)):
 if i % 2 == 0:
 print(lst[i], end = '\n')
 i = i - 1
 elif i == 7:
 break

subroutines

print(lst) # this is a procedure call

subroutines are procedures (functions) and methods

compare with basic code:

05 HOME : TEXT : REM Fibonacci numbers
10 LET MAX = 5000
20 LET X = 1 : LET Y = 1
30 IF (X > MAX) GOTO 100
40 PRINT X
50 X = X + Y
60 IF (Y > MAX) GOTO 100
70 PRINT Y
80 Y = X + Y
90 GOTO 30
100 END

and

GOSUB

for subroutines

Object-oriented

class Door:
 def __init__(self, number, status='closed'):
 self.__number = number
 self.status = status
 def open(self): # this is a method
 self.status = 'opened'
 # cut

d = Door(42)
d.open() # this is a method call
print(d.status)

in this code snippet, 'd' is a Door

A bit functional

l = list(range(0, 4))
l2 = list(filter(lambda x: x > 2, l))

we have the function: x x > 2 (this is not a procedure)

A bit generic

T = TypeVar('T')
def first(seq: Sequence[T]) -> T:
 return seq[0]

returns the first element

About types / typing

Object = instance of a type / result of the instanciation of a type

Type = description of all the objects with this type

d0 = Door(0)
dd = [Door(i) for i in range(10)]

here d0 and dd[i] are doors / are of type Door

they are independant, yet they behave the same way

A simple test than you shall pass

run

print(type(d))
print(first(d))

on

d = (0, 1, 2)
d = [0, 1, 2]
d = {0, 1, 2}
d = {'pi': 3.14, 'e': 2.72}

what are the output? why?

Python has some built-in types:

Numeric data types: int, float, complex

String data types: str

Sequence types: list, tuple, range

Binary types: bytes, bytearray, memoryview

Mapping data type: dict

Boolean type: bool

Set data types: set, frozenset

multiple-item data types are called collections or containers

Comment the difference(s):

T = TypeVar('T')
def first(seq: Sequence[T]) -> T:
 return seq[0]
versus
def first(seq):
 return seq[0]

def sqr(x: int) -> int:
 return x * x
#versus
def sqr(x):
 return x * x

b: int = 2
#versus
b = 2

b: str = 2
print(type(b))

def doit(i: int):
 print('int', i)

def doit(s: str):
 print(type(s), s)

doit(0)
doit("0")

What happens? Why?

use a linter!

and a type checker:

Mypy (by Dropbox), Pytype (by Google), Pyright (by Microsoft)

Pyre/Pysa (at Facebook and Instagram)

Variables, values, and types

py:

a = 1 # implicit type for 'a' -- typed by the compiler
b: int = 2 # explicit type for 'b'
b = "a string" # do compile; 'b' is now a string

Pascal:

var b : integer = 2; // types have to be explicit

modern C++:

auto a = 1; // implicit type
int b = 2; // explicit type
auto b = "a string"; // do not compile: 'b' is already defined!

py:

a = 1
ida = id(a)
a = 2
print(id(a) == ida) # gives: False

we cannot change the value of the integer whose identity is 'ida'

 integers are immutable in Python

py:

a = 1
ida = id(a)
b = a # 'b' is actually a reference to 'a'; we can say that 'b' is 'a'
print(id(b) == ida) # gives: True

b = 2 # now 'b' designates a new integer
print(id(b) == ida) # gives: False

print(a) # gives 1

single-item data types (integers, floats, complex numbers, Booleans) are

immutable

strings and tuples are immutable

whereas

lists, sets, and dictionaries are mutable

Exercice

def foo(b):
 print(id(b), b)

def bar(c):
 print(id(c), c)
 c = 2
 print(id(c), c)

a = 0
print(id(a), a)
foo(a)
bar(a)
print(id(a), a)

What is printed? Explain.
What the rationale behind it?

py:

l = [1, 'a string']
idl = id(l)
l.append(Door(0))
print(id(l) == idl) # gives: True, lists are mutable

print(l) # gives: [1, 'a string', <__main__.Door object at 0x7f568add0790>]

for e in l:
 print(e) # gives: ???

Explain:

why the behavior hopefully differs from the previous example

the output of print(l)

the output of the for loop, and how we can make it possible?

class Door:
 def set_number(self, number):
 self.__number = number
 # cut

py:

cont'd
print(id(l), id(l[2]), l[2])
for e in l:
 if isinstance(e, Door): # same as: if type(e) == Door:
 e.set_number(2)
print(id(l), id(l[2]), l[2])

what is the output?
what have we done here?

Structured programming and blocks

Python:

def doit(lst):
 for i in range(len(lst)):
 if i % 2 == 0:
 print(lst[i], end = '\n')
 i = i - 1
 elif i == 7:
 break

blocks start with ':' and rely on indentation

Equivalent code in C++:

void doit(std::list<int>& lst)
{
 for (int i = 0; i < lst.size(); ++i)
 if (i % 2 == 0) {
 std::cout << lst[i] << '\n'; // do not compile! Why?
 i = i - 1;
 }
 else if (i == 7) {
 break; } // the two braces are useless here
}

blocks are delimited by '{' and '}', and indentation does not matter

an instruction (not a block of instructions) ends with ';'

in Python indentation matters

i = 1
 i = 0 # gives: IndentationError: unexpected indent

and it is the key to see blocks

i = 0
while i < 5:
 print(i)
 i += 1

vs

i = 0
while i < 5:
 print(i)
i += 1

compare with COBOL (1959):

column 7 is for an indicator:

'*' means that it is a comment

'-' means that it is the continuation of the previous line

'/' means that, when printing your code listing, it would page break

'D' means that the line would only compile when in debugging mode

compare with FORTRAN 66:

 program circle
 real r, area

c This program reads a real number r and prints
c the area of a circle with radius r.

 write (*,*) 'Give radius r:'
 read (*,*) r
 area = 3.14159*r*r
 write (*,*) 'Area = ', area

 stop
 end

Memory

a = 1 # new object => memory allocation
b = a # no new object
b = 2 # b is a new object => memory allocation
 # no need for explicit memory deallocation

py:

d = Door(1) # new object
print(d.status)
d.open() # method call
 # no need for memory deallocation

Python relies on a garbage collector to free memory

Read about

heap and stack

reference counting

the mark and sweep algorithm
https://en.wikipedia.org/wiki/Memory_management

https://en.wikipedia.org/wiki/Tracing_garbage_collection

The programmer can not care about memory; yet he/she shall know:

del my_large_container
gc.collect()

https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Tracing_garbage_collection

Python as an object-oriented language

A particular way of thinking:

a program = data types and algorithms (functions)

example in C:

struct rectangle { // a data type
 float width, height;
};

void scale(rectangle* r, float s) { // an algorithm
 assert(r != NULL and s > 0);
 r->width *= s;
 r->height *= s;
}

Compare:

dta = [("EPITA", "Kremlin-Bicetre"), ("Sorbonne University", "Paris 5")]

print("name=", dta[0][0], "where=", dta[0][1])

with:

@dataclass
class University: # what have we here?
 name: str = None
 location: str = None

dta = [University("EPITA", "Kremlin-Bicetre"),
 University("Sorbonne University", "Paris 5")]

print(f"name = {dta[0].name} where = {dta[0].location}")

print(dta[0]) # works directly!

from dataclasses import dataclass

@dataclass
class University: # a data type
 name: str = None # grouping two strings
 location: str = None

meaning that a university is composed of two data: name and location, both being
strings

u1 = University("EPITA", "Kremlin-Bicetre") # a particular university, u1

print(u1.name) # gives: EPITA -> so *explicitly* print its name

print("Paris" in u1.location) # more readable than 'u1[1]'

we have defined a type:

to be able to have objects with that particular type
a "University" is far more precise than "just two strings"

to store data and explictly access to one piece of data

".location" is way more explicit than "[1]"

that is what you have in all python libraries: types

they are the keystones of these libraries

the librairies also provide algorithms
doing stuff / transforming data is the key features of these libraries

a data type

@dataclass
class University:
 name: str = None
 location: str = None

an algorithm, dedicated on objects being a University

def relocalize(u: University):
 if u.location == "Kremlin-Bicetre":
 u.location = "Grand Paris"

sample use:

dta = [University("EPITA", "Kremlin-Bicetre"),
 University("Sorbonne University", "Paris 5")]
'dta' is a list of two universities

for u in dta:
 relocalize(u)
we have relocalized all universities in 'dta'

in:

a data type
@dataclass
class University:
 name: str = None
 location: str = None

we say that:
we have define a class (a type) with two attributes (named 'name' and 'location')

in this example, its is a particular class that has only data; it is "just a data type"

in this example, algorithms are defined on the side (usually nearby)

this is the case of 'relocalize'

algorithms are not within the type

this example corresponds to:

a program = data types and algorithms (functions)

Another way to describe programs:

a program = a set of types and their relationships

so having a a type is having both data and algorithms

and the next level will be to think about their relationships...

this is the object-oriented way, and Python is an OO language

we are moving from scripting (toy use of Python) to programming (industrial use of
Python)...

now:

a type = data + algorithms on these data

in object-orientation, a class has attributes and methods:

description-level instance-level meaning

class object an entity (*)

attributes data its state

methods (properties) (sub)routines its behavior

(*) a thing that has its own identity and whose identity conforms to what it is / to its type

end of course #1

